422 research outputs found

    Radiation effects on polymeric materials

    Get PDF
    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum

    The effects of the space environment on two aramid materials

    Get PDF
    Two aramid fibers having closely related chemical structures were chosen for important roles in the first tether to be used to connect pairs of orbiting vehicles. The protective outer jackets of the tethers will consist of woven fibers of poly(m-phenylene isophthalamide), commercially available from du Pont as Nomex. A cylindrical sheath of woven Kevlar 29, whose principal constituent is poly(p-phenylene terephthalamide), will be the load-bearing component for the tethers. Orbiting tethers will be in a hostile environment in which short wavelength electromagnetic radiation and energetic charged particles degrade exposed organic materials. At lower orbiting altitudes atomic oxygen is an especially serious hazard. Studies on the effects of ultraviolet radiation and atomic oxygen on fibers and films of Kevlar and Nomex are in progress. In an experiment to simulate the effects of atomic oxygen in space, small tows of Kevlar and Nomex were mounted in a commercial ashing device filled with oxygen at low pressure. An RF discharge in the instrument dissociated the molecular oxygen producing a strongly oxidizing atmosphere containing O(3P)(sup 4). Erosion was measured in terms of mass loss. Kevlar films were exposed to UV radiation in an apparatus consisting of a small vacuum chamber, 23 cm in diameter, into which a mass spectrometer and a quartz window were incorporated. Samples were exposed under vacuum with a 1000 watt xenon-arc lamp. Volatile products could be monitored with the mass spectrometer during the exposures. Transmission infrared spectra were taken before and after exposure to monitor chemical changes in the films

    Attribution Required: Stack Overflow Code Snippets in GitHub Projects

    Full text link
    Stack Overflow (SO) is the largest Q&A website for developers, providing a huge amount of copyable code snippets. Using these snippets raises various maintenance and legal issues. The SO license requires attribution, i.e., referencing the original question or answer, and requires derived work to adopt a compatible license. While there is a heated debate on SO's license model for code snippets and the required attribution, little is known about the extent to which snippets are copied from SO without proper attribution. In this paper, we present the research design and summarized results of an empirical study analyzing attributed and unattributed usages of SO code snippets in GitHub projects. On average, 3.22% of all analyzed repositories and 7.33% of the popular ones contained a reference to SO. Further, we found that developers rather refer to the whole thread on SO than to a specific answer. For Java, at least two thirds of the copied snippets were not attributed.Comment: 3 pages, 1 figure, Proceedings of the 39th International Conference on Software Engineering Companion (ICSE-C 2017), IEEE, 2017, pp. 161-16

    The effects of the interaction of polymeric materials with the space environment

    Get PDF
    Polymeric materials in low earth orbit will be exposed to a harmful environment mainly due to atomic oxygen and ultraviolet radiation. In geosynchronous earth orbit, the major hazards to such materials are energetic charged particles and ultraviolet radiation. The progress of studies on the effects of these hazards on a polyetherimide, a polyimide, and an epoxy adhesive is presented

    Space environmental effects on polymeric materials

    Get PDF
    Two of the major environmental hazards in the Geosynchronous Earth Orbit (GEO) are energetic charged particles and ultraviolet radiation. The charged particles, electrons and protons, range in energy from 0.1 to 4 MeV and each have a flux of 10 to the 8th sq cm/sec. Over a 30 year lifetime, materials in the GEO will have an absorbed dose from this radiation of 10 to the 10th rads. The ultraviolet radiation comes uninhibited from the sun with an irradiance of 1.4 kw/sq m. Radiation is known to initiate chain sission and crosslinking in polymeric materials, both of which affect their structural properties. The 30-year dose level from the combined radiation in the GEO exceeds the threshold for measurable damage in most polymer systems studied. Of further concern is possible synergistic effects from the simultaneous irradiation with charged particles and ultraviolet radiation. Most studies on radiation effects on polymeric materials use either electrons or ultraviolet radiation alone, or in a sequential combination

    A speculative remark on holography

    Get PDF
    Holography suggests a considerable reduction of degrees of freedom in theories with gravity. However it seems to be difficult to understand how holography could be realized in a closed re--contracting universe. In this letter we claim that a scenario which achieves that goal will eliminate all spatial degrees of freedom. This would require a different concept of quantum mechanics and would imply an intriguing increase of power for the natural laws.Comment: 14 pages, a reference adde

    Kinetic parameters from thermogravimetric analysis

    Get PDF
    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map

    HHP 520.01: Educational Research

    Get PDF
    corecore